B.Sc. (Honours) Examination, 2018
 Semester-III
 Statistics
 Course : CC-5
 (Sampling Distribution)

Time : 3 Hours
Full Marks : 40
Questions are of value as indicated in the margin

Answer any four questions

1. a) Let $X_{1}, X_{2}, \ldots, X_{n}$ be a sequence of i.i.d. random variables with common p.d.f. $f(x)=\left\{\begin{array}{cc}e^{-(x-\theta)} & ; \quad x \geq \theta \\ 0 & ;\end{array} 0 . \omega\right.$

Show that $\bar{X}_{n} \xrightarrow{P} 1+\theta$, where $\bar{X}_{n}=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}$
b) Explain why a random sample of size 25 to be preferred to a random sample of size 20 to estimate population mean.
c) Show that if the sample is drawn without replacement then $\operatorname{cov}\left(X_{i}, X_{j}\right)=\frac{-\sigma^{2}}{N-1}, \mathrm{~N}$ being the population size and σ^{2} population variance. $5+2+3=10$
2. a) Define p-value in the context of testing of hypothesis.

A student wishes to test a null hypothesis to calculate a probability of .65 , but then realizes it is a two-failed test and he doubles this to get a p -value as 1.3 . Comment on the validity of this.
b) Show that t distribution tends to normality as $n \rightarrow \infty$.
c) For X and Y ; independently distributed random variable each in the form $\mathrm{R}(0,1)$. Show that $U_{1}=\sqrt{-2 \ln X_{1}} \cos 2 \pi X_{2}$ and $U_{2} \sqrt{-2 \ln X_{1}} \sin 2 \pi X_{2}$ are independently distributed $\mathrm{N}(0,1)$.
$3+3+4=10$
3. a) For the following sequence of independent random variables, does the weak law of large number hold?

$$
P\left\{X_{k}= \pm k\right\}=\frac{1}{2 \sqrt{k}} \text { and } P\left\{X_{k}=0\right\}=1-\frac{1}{\sqrt{k}}
$$

b) State and prove the Chebychev's inequality.
4. a) Describe a test procedure of difference of two sample proportions.
b) Let X_{1} and X_{2} be normal variables with zero means, unit variances and correlation coefficient ρ, prove that

$$
E\left(\max \left(X_{1}, X_{2}\right)\right)=\sqrt{\frac{1-\rho}{\pi}}
$$

5. Let $X_{(1)}, X_{(2)}, \ldots, X_{(n)}$ be the set of order statistics of independent random variables X_{1}, $\mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}$ with common p.d.f.

$$
f(x)=\left\{\begin{array}{lll}
\beta e^{-x / \beta} & \text { if } & X \geq 0 \\
0 & \text { o.w } &
\end{array}\right.
$$

a) Show that $X_{(r)}$ and $X_{(s)}-X_{(r)}$ are independently distributed for $s<r$.
b) Find the p.d.f. of $\mathrm{X}_{(\mathrm{r}+1)}-\mathrm{X}_{(\mathrm{r})}$ and $\mathrm{E}\left(\mathrm{X}_{(\mathrm{r}+1)}-\mathrm{X}_{(\mathrm{r})}\right)$. $5+5=10$
6. a) Show that sample mean and sample variance are independently distributed when a sample is collected from $N\left(\mu, \sigma^{2}\right)$. Also establish the sampling distribution of sample variance.
b) Let the variables $\mathrm{X}_{\mathrm{i}}(\mathrm{i}=1,2,3)$ be independently and identically distributed in the form $\mathrm{N}(0,1)$. Express the $P\left[4 X_{1}^{2}+4 X_{2}^{2}-7 X_{3}^{2} \leq 0\right]$ in terms of probability of χ^{2} or t or F . $5+5=10$

